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A problem that John might like (I guess...):

Effective diffusivity of a y/y’ alloy
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C. None of the above

When does D¢ exist?




Generalizations of the problem

= Diffusion in a general two-phase alloy with a periodic structure

® Diffusion in a continuum with periodic diffusivity D;(x)

Include sink/source functions

" Include segregation in phases

" |nclude driving force

= Atomic diffusion on superlattices

* Interstitial diffusion in crystals with multiple occupation sites
* Grain boundary diffusion

* Diffusion along a dislocation core



The problem of effective diffusivity

Exact diffusion equation:
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Periodic alloy
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Existence of effective diffusivity
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Step 1: solve three steady-state problems on a repeat cell:
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Step 2: find DY as follows: D = ZZ <Dl.m ¢]>
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NB: Even if the local diffusivity is isotropic, the effective diffusivity can still be a
tensor, reflecting the structural anisotropy.




Variational calculation of the effective diffusivity

Step 1: Minimize three functionals:
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with boundary conditions:
P (A, %5, %3) = 0,(0,x,, %) + I,
P (X1, 4,%3) = 0, (x,,0,X;) + 0,
P (X, %, 4) = 0, (X, %,,0) + Oy 5
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Step 2: find Dije.ﬁ[ as follows: D;.ﬁ :,12 <Dim a¢]>
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In the principal coordinate system the minimum values of @,
coincide with eigenvalues of De

(®,) . =D, k=123



Upper and lower bounds from the variational approach

Suppose the local diffusivity is isotropic: D;; = &;,D(x).
Bounds of D -
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Example: diffusion in a y/y’ - type structure

————————————————————————————

Deff is isotropic

“Smart” guess: DY

Upper bound:
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Maxwell formula for the effective diffusivity*

d(D,—D, )v
DY =D, |1+ (D, = Dn)
D,+(d-1)D, —(D,—D,)v

d = dimensionality of space

v=0 — Dett=D
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v=1 > DeffZDp
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m Expected to work well in isotropic structures

*)J.C. Maxwell, Treatise on Electricity and Magenetism, 3" Edition
(Clarendon Press, Oxford, 1904)



Comparison of different solutions

Fast diffusion in particles
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" The average between the bounds is an excellent approximation
= Maxwell is astonishingly good




How to include the segregation

Introduce a period potential u(x) on diffusing atoms.

Equilibrium distribution of atoms: ¢, (x) = ¢, exp(— u}g))

Effective diffusion equation
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De" is obtained by replacing D;(x) by

(¢, (®)

and applying the same procedure as before.

Dy (x)

For a two-phase alloy we can reuse all previous solutions with the substitutions

c
D, — D —"» D, - D, :
ve, +(1-v)c, ve, +(1-v)e,




Effect of segregation on diffusion
Cubic particles

Fast diffusion in particles Slow diffusion in particles
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= Segregation in particles — = Segregation in particles — lack of
trapping — low Deff fast diffusion paths + trapping —

= Segregation in matrix — lack of very low D"

fast diffusion paths — low Deff = Segregation in matrix — axcess
to fast diffusion paths — large D¢



Effect of segregation on diffusion
Weakly inhomogeneous systems

(aDy)  ((au)) _(aDAw) | AD=D~(D)
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/ f \
Variation of diffusivity Segregation Diffusion-segregation
correlation

DY =(D)1-

Uncorrelated fluctuations always slow down the effective diffusivity




Further generalizations

General form of the effective diffusion equation:
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= UJ-"slow” field: [VU|AL << U
" The “fast” component of field, u(x), is incorporated into De'

= f(x,t) — sink/source function

This generalization does not affect the calculation of Dé' |




Discrete model

@ .\ " N sites per repeat cell
= Site energies u(x)
.7./ = Jump rates I'(x,x’)
o How to find Def ?

Is
_____

Examples of applications:

"= |nterstitial diffusion in crystals with multiple occupation sites.
For example, T and O sites in BCC and HCP crystals

= Grain boundary diffusion
= Diffusion in dislocation cores

= Diffusion in polymers



Exact solution of the model

DY = c(x)I(x,x')x',—x, )[(x'j—xj)+ S, (x")-S, (x)]

{x.x'}

- equilibrium occupation probabilities

S(x) — displacement vectors (Huntington and Ghate, 1962)

They must be determined by solving the 3Nx3N linear system:

ZF(X, x')[S(x') -S(x)+(x—Xx' )] =0

3 1 1 1Y
Example: < g D7 = /12[ ’ Tt )
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Variational formulation and bounds

The displacement vectors can be found by minimizing the functions
D, = > c(x)Ixx)(x',—x,)+ S,(x)-S,x)], i=123
{x,x'}

In the principal coordinate system the minimum values of
@, coincide with eigenvalues of D7 :

(®,) . =D, i=123
This allows calculations of bounds of Dfﬂ
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Summary

= Effective diffusivity in any periodic system, atomic or
continuum, can be calculated exactly or approximated
by bounds

" The discrete model can be used for numerical
solution of the continuum problem

= Segregation, driving forces, sinks and sources can be
readily included

" The discrete model does not include the defect-
induced (Bardeen-Herring) correlations



